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Synopsis 
9 continuum theory of nonlinear viscoelastic behavior has been developed which is 

applicable to the quantitative description of the rheological properties of high polymeric 
materials. Particular classes of deformations have been investigated. Special emphasis 
has been placed upon nonlinear effects in viscoelastic fluids such as normal stresses and 
variable viscosity. Two new classes of flows are defined: sufficiently smooth flow and 
isoelastic flow. 

1. INTRODUCTION 
Due to the tremendous growth of the polymer industries in the last 

quarter century, many new problems have been brought to the attention 
of the engineer and the applied scientist. Among the most important of 
these are the deformation and flow behavior of high polymeric systems in 
the processes which fabricate plastics, fibers, and elastomers. These de- 
velopments have led Bernhardt and McKelvey4 to define polymer processing 
as a new distinct area of engineering endeavor. 

Prior to World War 11, most materials of significance to engineering de- 
sign were nearly rigid solids (e.g., metals) and linear purely viscous fluids 
(e.g., air, water, light hydrocarbons) for which stress analysis and calcula- 
tion of velocity profiles and frictional drag are well known and exist in 
standard texts. The new polymeric materials (both thermoplastic and 
crosslinked) did not fall into these categories. Below their glass tempera- 
ture16vg1 in general, high molecular weight polymers tend to be hard, brittle, 
glassy solids which exhibit significant stress relaxation and creep when de- 
formed. Above the glass temperature, polymers become soft, flexible, 
and rubbery, with thermoplastic materials eventually going through a melt- 
ing range to become transparent, highly viscous liquids which still main- 
tain significant “elastic” properties, the most noticeable of which is recoil 
upon stoppage of flow. Solutions of thermoplastics exhibit similar elas- 
tic properties but usually to a lesser degree. This property of high poly- 
meric fluids was first fully recognized by Weissenberg.38~~9 

High polymers below their glass temperature may usually be considered 
to be subjected to infinitesimal deformations, and stress analysis prob- 
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lems may be attacked by using the linear theory of viscoelasticity, which, 
though dating back to the nineteenth century, did not begin to receive ade- 
quate attention until the last two decades.1.45s46.91 Methods of solution 
of stress analysis have been considered in detail by Lee and his co-worker~,~~ 
some of these procedures having recently been extended to include non- 
isothermal effects.6'J.61 

The treatment of the deformation of polymers above their glass tempera- 
tures is more difficult due to the essential nonlinearity of the problem. 
Stress analysis methods for crosslinked amorphous materials such as rubber, 
which are subjected to large deformations, have received increased atten- 
tion since 1940. Investigations based upon the approximation of purely 
elastic deformations are carried out by the British Rubber Producers' 
Research Association, particularly by Rivlin and co-workers. The the- 
oretical and experimental results of these investigators are largely sum- 
marized in the texts by Green and Z e r r ~ a , ~ ~  Green and ad kin^,^^ Eringe11,2~ 
and the review of TruesdeL95 

Much of the processing of fibers and thermoplastics takes place in states 
in which the assumption of purely elastic deformations is hardly valid, 
relaxation, creep, and flow being quite significant. The analysis of the dy- 
namics of this processing requires the study of nonlinear viscoelastic media. 
Of concern are problems such as the design of screw extruders and dies, fiber 
spinning, calendering, molding, etc. The present state of the art in most 
of these areas is either empirical or makes use of largely oversimplified 
one-dimensional rheological models (A number of reviews have been 
p~blished.~v~~,5~-~5). Now many authors have called attention to observed 
nonlinear viscoelastic effects in processing operations, 2 1 5 2 - 5 6  and preliminary 
analytical investigations of some of these effects were made in an earlier 
paper.101 

In order to  treat general deformations of high polymeric materials both 
in the solid and fluid states it is necessary to develop a constitutive equation 
for the stress which is applicable to the nonlinear as well as the linear range 
of rheological behavior. Though as has been pointed out on several oc- 
c a s i o n ~ , ~ ~  some of the mechanics of constructing such a constitutive equa- 
tion were known to Cauchy in the time of Louis Philippe and had been 
studied by Zaremba and Jaumann during the early years of the present 
century, it was not until the publications of Oldroyd@ and No1F2 in the 
1950's that a firm foundation existed to this phase of continuum me- 
chanics. Significant contributions to  the foundations of nonlinear contin- 
uum theorieswere also made inthe earlyfifties by T r u e ~ d e l l ~ ~ ~ ~ ~  and Rivlinand 
Eri~ksen.8~ In 1957, Green and R i ~ l i n ~ ~  culminated many of these studies 
by publishing what is the only a priori satisfactory theory of nonlinear he- 
reditary materials. The Green-Rivlin theory is based upon the assumption 
that the stress is an hereditary function of the deformation history, the 
medium being assumed isotropic in the ground state. The concepts of 
Green and Rivlin have been extended and clarified by Rivlin and co- 
workers34~35J5,88 and put in an elegant Hilbert Space formulation by Noll 
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and C!~leman.'~J~@ Recently Ericksen21vz2 has suggested an alternate ap- 
proach to nonlinear viscoelastic fluids based upon assuming the stress to 
be dependent upon the deformation rate and a vector. This approach 
is suggested by the concept of molecular orientation in flow. It would 
appear, however, that this theory of anisotropic fluids is inadequate in com- 
parison with the Green-Rivlin theory of isotropic hereditary media, though 
it is an area of continuing study. 

The author believes that further study of the mechanics and thermo- 
dynamics of nonlinear viscoelastic media is necessary to improve the current 
status of polymer process engineering. It is believed that the approach 
of Green and Rivlin is the most satisfactory for such studies, constitutive 
equations investigated by 0thers~~9~7.101 being inadequate due to their 
weak a priori basis. In this paper, the Green-Rivlin approach is refor- 
mulated and in so doing a new series of kinematic tensors is derived. 
Important kinematic situations will be critically discussed and applica- 
tions to polymer processing evaluated. This paper continues the investiga- 
tions of earlier work, lo1 where a much simpler theory of viscoelasticity was 
derived and applied to polymer process operations. 

2. KINEMATIC PRELIMINARIES AND FORMULATION 
OF CONSTITUTIVE EQUATIONS 

In  this section we outline some fundamental concepts of kinematics and 
continuum physics and apply them to the derivation of a constitutive equa- 
tion applicable to high polymeric media. We shall use in this study two 
coordinate frames: a Cartesian system x fixed in space which is used to 
denote spatial points and coordinate frame a embedded in the medium 
with which we denote material points. At a past time 4, the distance 
between two differentially separated material points at t and f + df is 

dt(+) = Cra (+Idaa = C eadzu(+) (1) 
a a 

where ^/a are the covariant base vectors of the embedded frame and e, are 
the orthogonal unit vectors of the Cartesian frame. At time t, the dif- 
ferential line segment has moved from a spatial location x to a location x 

An embedded differential area element in the medium may be similarly 
specified 

dii  = ndn = dh' X d t 2  

= C rs(CCEsa~tlaetzp) = 2 eu(CCEa~,dzndzzC) 
6 U P  a b e  

= C y6(+)W+> = Ceudaai,(+) 
6 a 

where the y6 are the contravariant base vectors of the embedded frame. 

(3) 
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Deformation at  a material point in a continuous medium may be spec- 
ified in terms of either the variation of a line segment or area element 
located at  that point, or other arbitrarily constructed nongeometric meas- 
ures. The classical studies of Cauchy and Stokessg as well as the more re- 
cent work of Rivlin,so Rivlin and Ericksen,** and Green and R i ~ l i n ~ ~  
essentially make use of the properties of a differential line segment. Here 
a deformation measure based upon a differential area element is used, such 
a measure being first noted by Truesdellg7 (see also E r i ~ ~ g e n ~ ~  asd Gross- 
man3’). The strain in the medium at  I;  incurred from time 4 to time 2 
may be specified as follows: 

The element dcu is located in the spatial frame at  x and the element di? 
at  2. Thus 

x = x + u + c  

C e j s  = C eu(zu + u, + 4 
where u represents the actual deformation of the body and c the contribu- 
tion of rigid displacement. It may be shown that (see Appendix) 

For incompressible materials ( J  = l), this is identical to the Piola-Finger 
strain tensor (e.g., Er i r~gen~~).  

Also of importance are the rate and accelerations of deformation 
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It may be shown that in Cartesian spatial coordinates the components of 
Bn are (see Appendix) 

For incompressible materials, the Bn become equivalent to kinematic ten- 
sors used earlier by G i e s e k ~ s ~ ~ J ~  and White and Metaner. lo1 

For a curvilinear coordinate frame having a metric tensor gi5 and con- 
jugate metric tensor g i j  we have (in summation notation) 

( n f l )  ij (n). . (n )  (n )  

(9b) - v iB"'j - v,,jBtrn B = - ~ ' 3  + 2 ~ t 3  V,,m m (3 (?. 
We are now in a position to formulate a constitutive relation for the 

stress-deformation behavior of a high polymeric medium. In so doing 
the following fundamental principles are recognized : (AI)  The stress 
a t  a material point ( located at  time t at  a spatial point x is determined by 
the entire past history of the deformation of an arbitrary small neighbor- 
hood of (. (AZ) The constitutive equation is form-invariant under a rigid 
motion in the spatial frame. 

The known physical properties of high polymeric media may be used 
to place additional restrictions on the constitutive equation. With little 
loss in the applicability of our result the following may be assumed: (BI)  
The stress in the medium is determined by the entire history of the de- 
formation such that strains in the distant past have less effect on the pres- 
ent value of the stress than deformations in the recent past. The duration 
of the memory may be taken, say, as T .  (B2) The medium is isotropic 
in the ground state. 

Making use of principles (&-Ad) and (BI-BS) the stress may be written 
(BS) The-medium is incompressible. 

Equation (10) may be written in the form of an expansion. To see how 
this is done, two related problems will be considered. First, following 
Volterrag8 we note that a similar scalar functional may be written in a form 
analogous to a Taylor series. 

t 
j[r(tdi_=;)I = c J' * * - J - T  kfl(t-f#q,. . . t -&)x(+1) .  . . 

t - T  n 1-T 

4dn)  d&. .  .&n (1W 
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Secondly we consider a constitutive equation of the form 

‘5 = -PI + $fn) [E(t-+i). . . . .E(t - dn)] (1 1b) 
which becomes eauivalent to eq. (10) when N -t a. Following procedures 
originally introduced by Reiner77*78*95 and developed by Rivlin and Spen- 
cer80~81~84~s8 we may expand Eq. (l lb) as a symmetric matrix polynomial 
in the E(4,) with the coefficients being functions of the invariants of E. 

d41. *d4n (12) 

where dn) is a symmetric isotropic matrix polynomial of degree n in the 
elements of the E(&) and linear in each of them. The coefficients of the 
matrix products are polynomials in the invariants of the matrices E(4,) 
and scalar functions of (t-4,). A more detailed account leading to equa- 
tions of this type is given by Green, Rivlin, and S p e n ~ e r . ~ ~ . ~ ~ ~ ~  

Expanding eq. (1 1) yields 

’5 

t 

E(d~dE(4dd41d42 -I- [- t T  L-T C (t-41)t-d~~) [tr E ( + I ) ] E ( ~ ~ )  

Equations of this form containing one term were considered by Lodge47@ 
(13) + ... 

and by Fredri~kson.~~ More recently Coleman and No11i4 and Bernstein, 
Kearsley, and Zapass have investigated the properties of expansions con- 
taining three terms of the types given above. 

3. STRESS RELAXATION 

There exist different classes of deformation in which considerable sim- 
plification may be made in eq. (12). In  this section a class of deformation 
of significance of “near-solid” polymers will be investigated and in follow- 
ing sections the flow behavior of viscoelastic fluids will be studied. 

Consider a medium to remain in the unstressed ground state until time 
4 = 0 and then to remain in this strained state until the present. On 
examining eq. (4) it is seen that 

E = C - I = constant 

E = O  
Equation (13) becomes 
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Using the Cayley-Hamilton theorem one obtains 

s = -PI + ( t  - T ,  t)C + a 2  (t-T, t)C2 (15) 

If it is assumed that the deforming process is elastic, al and a2 have the 
following values at  time t = 0. 

bW 
a2 = -2 - u2 

where W is the strain energy function and Il and I2 are invariants given by 

Il  = tr  C 

I2 = - [(tr C ) z  - tr  C 2 ]  (3 
It may further be noted that when t > T,  where T is the duration of the 
memory 

a1 = a2 = 0 

From eqs. (16), it may be seen that the many solutions derived in the 
theory of large elastic deformations of isotropic m a t e r i a l ~ ~ ~ . ~ ~ J ~  may be 
used to solve stress relaxation problems by means of the substitution of 

bW 
312 
__ = - (+) a2 

where a1 and cr2 are time-dependent quantities. This result was noted 
by RivlinS3 from different reasoning. 

The British Rubber Producers’ Research Association has performed 
an extensive series of experiments to obtain the form of the strain energy 
function for elastic deformation~.~~31~~~~~~~9~ The results of one series of 
experiments were in addition used successfully to predict the forces and 
deformations of experiments in different geometries. Rivlin and Saunderss5 
found that the strain energy function for the several vulcanizates of rubber 
they investigated was 

W = ci(Ii - 3) + F[I21 (18a) 

where F is a decreasing function of I2 which is generally somewhat smaller 
than the first term. Gent and Thomas2* have noted that the Rivlin- 
Saunders data may be fitted by the empirical expression 

W = c1 (I1 - 3) + c2ln (12/3) (18b) 
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Expanding the logarithm in a Taylor series we find the first-order approxi- 
mation to eq. (18b) is 

w = c1 (I1 - 3) + cz (I2 - 3) (18c) 
(Note the discussion of which was first proposed by MooneyM in 1940. 

eq. (1%) by Treloarg3). 
It is of interest to note that the expression 

w = c1 (I, - 3) (184 
is readily derivable from statistical m e c h a n i ~ s . ~ t ~ ~ ~ ~ ~  Recently Ciferri and 
Flory'O have performed a series of experiments using uniaxial extension 
deformations and claim that eq. (18d) is the true expression for the strain 
energy function and the observed dependence of W upon I z  is due to hys- 
teresis and other nonequilibrium effects. However their use and interpre- 
tation of uniaxial extension data appears to be subject to questi0n.~3.~~ 

There has been considerable interest in stress relaxation measurements, 
notably by Tobolsky and his  student^.^^.^^ However these authors have 
limited themselves to uniaxial extension measurements and have inter- 
preted their data on the basis of aZ being zero. Though this work appears 
to contribute to some areas of physical characterization it does not give 
more than qualitative aid to the interests of this paper. Although the 
Leaderman-Tobolsky time-temperature superposition principle is now well 
known, the generality of its applicability in stress analysis problems re- 
mains open to question. 

Of more interest are the experiments of Bernstein, Kearsley, and Zapas5 
on stress relaxation in more general types of deformation. These research- 
ers are using equations similar to eqs. (12) and (13) to interpret their re- 
sults. 

4. VISCOELASTIC FLUIDS AND SUFFICIENTLY SMOOTH FLOWS 

In the previous section, deformations were studied which take place 
in solidlike rubbery polymers, whereas here we shall be concerned with ma- 
terials that are basically fluids. The concept of fluidity is based upon two 
considerations. The first of these is that fluids can sustain a steady shear- 
ing motion indefinitely under nonzero shearing tractions. The second 
notion is that a fluid has neither preferred intrinsic directions nor preferred 
states of strain. (It is to be noted that the theory of anisotropic fluids 
developed by Ericksenzl~zz does not satisfy the second notion of fluidity.) 
In  this section, we consider a general class of deformations for fluid ma- 
terials and derive a simpler form of eq. (12). 

Our concept of smooth flows is based upon an idea due originally to Green 
and R i ~ l i n ~ ~  of expanding the strain developed in the fluid between time 
C$ and time t, i.e. E(C$), as an infiiiite Taylor series of matrices of (convected) 
strain rates and accelerations. If we consider the convected components 
of the strain tensor 
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n n. s = o  

From eqs. (4) and (7) 

or 

Flows for which we may express the strain in the medium by eq. (19) are 
said to be sufficiently smooth. 

Substitution of eq. (19c) into eq. (12) and integration of the variables 
allows us to write the stress tensor as a symmetric matrix polynomial in 
the B,. 

O =  - p I + S [ B i , B z ,  . . .  B , . . . ]  (20) 
If the kinematics of flow are specified a priori, it is possible to specify the 
B, matrices and use matrix representation theorems77*81J'4~8s to write 5 
in a closed form. However in general this is'not possible, and the kine- 
matics must be calculated from Cauchy's law of motion. Thus approxi- 
mate forms of eq. (20) must be obtained to attack the general flow problem. 
This has been considered by Langlois and R i ~ l i n ~ ~  and by Coleman and 
Nolli3 using different formulations of the hydrodynamic theory of visco- 
elastic fluids. By substituting ED' for v in eq. (20) and using a matrix 
representation theorem due to Spencer and Rivlins8 it may be shown that 

.e = -pI + &Sl + &2Sz + e3S3 + 0 (E4) (21) 

&I = wIB1 (224 
e2Sz = 02B1' + ~3 Bz (22b) 
e3S3 = (w4 t r  B1 ) B + w ~ B  3 + m@iBz + BzBi) (224 

where 

the a, being constant coefficients. It may be seen that for very slow flows 
the behavior approximates the Newtonian fluid as developed by Stokes.s9 
The next higher approximation includes the Reiner-Ri~lin7~.SO cross-vis- 
COUS term and an additional acceleration tensor. The third term in- 
cludes three new nonlinear elements. 
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Equations (21) and (22) may be interpreted in two fashions. Most 
obviously the development indicates a perturbation about the state of 
rest. However, an alternate interpretation is a perturbation about 
Newtonian flow and solutions of eqs. (21) and (22) together with Cauchy’s 
law of motion may be considered as perturbing about the Navier-Stokes 
equations. 

In the remainder of this paper, we shall consider special simple flow 
situations where exact solutions are possible. In particular we study the 
kinematic significance of these flows and their application to calculation 
of the wf coefficients. 

5. ISOELASTIC FLOW 

W e i s ~ e n b e r g ~ ~ ~ ~ ~ J ~ ~  first pointed out the significance of the recoverable 
elastic strain which flowing viscoelastic fluids possess. Later authors, 
notably M o ~ n e y , ~ ~  Jobling, 39 and Philippoff 7 0 ~ 7 3 ~ 7 4  studied and re-empha- 
sized the importance of Weissenberg’s concepts. In this section, we shall 
treat flows in which material points travel along paths having everywhere 
the same value of the recoverable strain tensor. Such flows are said to 
be locally isoelastic with respect to this streamline and if every material 
point in the fluid traverses such a path the flow will be called globally 
isoelastic. Clearly, the recoverable strain will only remain constant if a 
point traverses a path along which the kinematics of deformation does not 
vary. Thus along isoelastic streamlines the B, tensors should be every- 
where the same value. It would appear that the concept of isoelastic 
flow is related to Coleman’s substantially stagnant motions*l and Noll’s 
motions having a constant stretching hist0ry.6~ 

As the B,  tensors must be everywhere the same on isoelastic streamlines, 
the kinematics of motion in many of such cases may be specified a priori. 
When this is the case, the stress may be calculated from the use of matrix 
theorems. Three special cases of isoelastic motion are worthy of discussion. 

a. Quasi-Potential Flow 

This type of fluid motion may be specified by 

v = Ue, + Oez + Oe3 

where U is a constant or in sufficiently rapid flows it may depend on x, 
if the fluid is only slightly viscoelastic. This kinematic example would exist 
in the problem or the flow of an infinite fluid around a submerged object 
at  large distances from its surface. It might be expected that potential 
flow theory is applicable to this type of motion, but there exist difficulties 
in such a presumption as shown by SlatteryS7 and in general quasi-potential 
flow is rotational. 

B, = O  (for all n) (24a) 

For these motions 

E (4) = 0 (24b) 
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and 

711 712 713 1 
731 T32 7 3 3  1 1 1 7 2 1  7 2 2  723 = - 0 p 0 

b. Laminar Shearing Motion 

This type of motion is specified by 

where the e, are orthonormal vectors. (Note that orthogonal curvilinear 
coordinates are included as well as Cartesian.) These flows include Couette 
flow between parallel planes and coaxial cylinders and Poiseuille flow be- 
tween parallel planes and in a tube. (Flow between coaxial cones and tor- 
sional flow approximate laminar shearing flow.) The earliest analysis of 
this type of motion for viscoelastic fluids was by Rivlins2 (for Rivlin-Erick- 
sen fluids). More recent analyses have been given by Ericksen,16,20 
G i e s e k ~ s , ~ ~  Coleman and No11,12 and White and Metzner.lO1 For these 
motions 

B, = 0 n > 2 (26a) 

The stress tensor is given by 

Using a matrix representation theorem derived by Rivlin,81 it follows 
that 

'T = -PI + X1B + + X3B2 + X4Bz2 
+Xri(BiBz + BzBi) + A S  (Bi2 Bz + B&') 

+A4 (BiBz2 + Bz2BJ + X8 (B12Bz2 + Bz2 Bi2) (28) 

where the A, are functions of r2. On substituting eq. (26a) into eq. (28), 
it is found that this matrix polynomial is equivalent to 
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7 = -PI + pB, - (i) PiBz 4- P z  [Biz 4- (i) Bz] (29) 

where p, PI, and pz are dependent upon I’.2 
Laminar shearing flow is the most significant type of isoelastic motion. 

It is not only important due to  its many applications in industrial proc- 
esses, these being discussed in an earlier paper,lol but it affords us a method 
of determining the w j  coefficients in eq. (22). On comparing eqs. (29) 
and (30) with eq. (22) it is seen that 

a1 = limit (p )  
r+o 

wz = limit (Pz) 
r+o 

( P 2  - 01) 
w3 = limit [ ] 

r+o 

The coefficient p is well known as the apparent viscosity and has been in- 
vestigated for many years. Detailed discussions of the apparent viscosity 
of polymer solutions is found in the two decade-old book by Philippoff68 
and in the now classic text by Reine~-.?~ Apparent viscosities of polymer 
solutions are readily measured, and data appear frequently in the lit- 
e r a t ~ r e . ~ * ~ ~ ~ ~ ~ ~ ~  Measurements of the viscosities of polymer melts over 
a range of shear rates are given by Bernhardt3 and Philippoff and G a ~ k i n s . ~ ~  

Measurements of &.and PZ have been made. during the last decade. The 
experimental techniques are summarized in the literature. 26,49t102 Con- 
siderable controversy exists over the results of these measurements, es- 
pecially in conjunction with the hypothesis of Weissenbergloo that P 2  is 
zero. The experimental researches of Roberts,86 Philipp~ff,~J’ and Kotaka 
et al.40 support this conclusion. Notably M a r k o v i t ~ ~ ~ . ~ ~  and Zapas and 
Kearsleylo3 have disagreed with this result and present data to support 
their conclusion. Most researchers agree, though, that pz is much smaller 
than pl. 

P1 has been determined for some polymer-solvent systems at  low and 
moderate shear rates (less than 500 reciprocal seconds)7~8~40~41~51~69~74~10z b Y 
using mainly rotational and birefringence instruments and at high shear 
rates (greater than 5000 reciprocal seconds) by using a jet extrusion in- 
strument.” In obtaining these data, 0 2  has often been assumed to be zero. 
Limited (and also questionable) data exist for polymer melts2,17,56J3 over 
narrow ranges of shear rates. The coefficients w1, wz, and w3 for two poly- 
mer-solvent systems calculated from such data are given in Table I. 
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TABLE I 

w12 0 2 7  w37 

dyne-sec.2 dyne-sec.2 dyne-sec.2 
System cm.2 cm. cm.2 Reference 

Polyisobutylene (15%) 
in decalin 9,320 Negligible -22,500 Philippoff69 

Polyethylene at 150°C. 410,000 Negligible -3,075,000 Dexter et al.17 
Ethylcellulose (11%) 

in cyclohexane 610 Negligible -140 Brodnyan et a1.8 

Before concluding this section, it is both interesting and important 
to note that there are hydrodynamic flows which though at  first appearing 
to be isoelastic are actually not. The most interesting example is the in- 
ability of laminar shearing flow to exist in noncircular ducts unless p2 
= Kp. This restriction was first noted by Ericksen, 16.19 and secondary flow 
patterns have been calculated by Green and R i ~ l i n ~ ~  and Langlois and 
R i ~ l i n . ~ ~  If 02 is zero as Weissenberg suggests, then laminar shearing 
flow may exist. A second type of motion is laminar shearing flow be- 
tween coaxial cones which cannot exist unless & + pz = (K/I'2).20e66J02 

L a n g l ~ i s ~ ~  has calculated secondary flow patterns. A further example 
occurs in laminar shearing flow between concentric spheres. 42 

c. Steady Extension 

This type of motion is specified by 

v = alxlel + u2x2ez + as3e3 (324 

(32b) 

where 

a1 + a2 + a3 = 0 

(by incompressibility). 
Steads extension of viscoelastic fluids was first analyzed by Coleman and 
Noll.l5 For these flows 

B1 = 2 0 a20 
0 0 a3 

a12 0 0 

B, = (-1)"" (B1)" (334 

(33b) E(4) = C ["-"'I (B1)" = - 1 exp (B1 (t  - $)I 2n! 2 
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The stress tensor is 

and by the Cayley-Hamilton theorem 

where vI and v2 are functions of the invariants of B,. 
Steady extension affords an approximation to many processing opera- 

tions involving stretching of high polymeric materials. Unfortunately 
no quantitative data exist in the literature for directly calculating v1 
and v2. We can, however, obtain the values of these parameters at very 
low deformation rates from the values of w1, w2, and w3, derived from laminar 
shearing flow experiments. Comparing eqs. (33a) and (35) with eqs. 
(21) and (22a), it is seen that in slow flows 

7 = - p I + ~1 BI + (WZ - W3)B12 

From Table I, we obtain for polyethylene a t  150OC. : 

vl - + 820,000 dyne-sec./cm.2 

vz - + 12,300,000 dyne-sec./cm.2 

6. CONCLUDING REMARKS 

In  this paper, the Green-Rivlin theory of nonlinear viscoelasticity has 
been reformulated and applied to important classes of problems. Espe- 
cial attention has been given to the kinematics of deformation of visco- 
elastic fluids. Two types of fluid motion, sufficiently smooth flows and 
isoelastic flows, have been discussed in some detail. It has been shown 
that for the latter type of fluid motion where the kinematics may be speci- 
fed a priori, exact closed forms of the constitutive equation are obtainable. 
For the more general class of sufficiently smooth flows this is not possible 
and contracted matrix polynomial forms are given for slow motions. 

The results of this paper provide us with tools to attack hydrodynamic 
and stress analysis problems arising in processing operations, and studies 
in this direction are now in progress. 

APPENDIX 

Derivation of Kinematic Tensors 
Beginning with eq. (3), it may be noted that a differential material vol- 

ume element is 
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The mass of the volume element dv is an invariant of the motion 
p(+) d?(+) = p ( t )  dv ( t )  = constant 

d ~ ( + )  = J dv(t)  

and thus 

(A-3a) 

(A-3b) 

The strain in the medium is defined by eq. (14) 

[d8(+)l2 - [da(t)12 = c d&d& - c da,  da ,  (-4-4) 
a i 

Substitution of eq. (A-3a) into eq. (A-4) yields 

which is equivalent to eq. (6a). Equation (6b) follows immediately from 
substituting eq. (5)  into eq. (A-5). 

The B, tensors are defined by eq. (7). It may be seen that 

Thus 
n f l  (n)  2 (n) cc B,  dai da, = [ &) da, da, + Bij  da,  da, + B f j  dal da, 

i j  i l  

(A-6) 
From eq. (.A-3b) 

Using eq. (A-3b), we have 

(A-7) 



1144 J. L. WHITE 

Substituting eq. (A-7) into eq. (A-6) yields 

which is equivalent to eq. (8). 
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R6ssum6 
Une th6orie continue du comportement viecoklastique non-lin6aire a 6th d6velop6e et  

est applicable A la description quantitative des propri6t6s rh6ologiques des hauts poly- 
mhres. Des classes particulibres de d6formationq ont 6t6 ktudikes. On s’est specialement 
int6ress6 aux effets non-lin6aires dam licas des fluides viscoelastiques tels que les tensions 
normales e t  les viecositks variables. Deux nouvelles classes d’6coulement sont d6finies: 
6coulement suffisamment 6gal et Bcoulement iso6lastique. 

Zusammenfassung 
Es wurde eine zur quantitativen Beschreibung der rheologischen Eigenschaften hoch- 

polymerer Stoffe brauchbare Kontinuumtheorie dee nichtlinearen Viekositatsverhaltens 
entwickelt und eine Untermchung einiger spezieller Deformationeklassen durchgefuhrt. 
Dabei wurde den in viskoelastischen Flussigkeiten auftretenden nichtlinearen Effekten 
wie Normalspannungen und veranderlicher Viskositat besonderes Augenmerk zugewandt. 
Es werden swei neue Klassen von Fliessvorgangen definiert, namlich das hinreichend 
glatte und das isoelastische Fliessen. 
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